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Abstract. This paper proposes an improvement of certain encryption approaches designed based
on hardness of the learning from parity with noise (LPN) problem. The proposal employs a dedicated
homophonic coding and randomness resulting in a harder underlying LPN problem in comparison
with the related source schemes without homophonic coding. It is shown that the proposed scheme
provides the following security features: (i) the indistinguishability in the CPA scenario; and (ii)
hardness of the algebraic recovering of the secret key in the CPA scenario. Regarding (ii) it is shown

that the secret key recovery is as hard as the LPN problem where the noise is equal to 1−(1−2p)(m−`)/2

2

and m, ` and p are the parameters of the proposed scheme. Consideration of the implementation
complexity shows that it is low (regarding the both: time and space), assuming that the appropriate
efficient linear block codes are employed. The proposed encryption is compared with the related
recently reported ones and it is pointed out that the novel scheme can provide an enhanced security,
reduced communications overhead and has approximately the same implementation complexity.

Keywords: symmetric encryption, LPN problem, randomness, homophonic coding, error-correction
coding.

1 Introduction

Usefulness of involvement pure randomness into a cryptographic primitive has been recognized
in a number of reported designs and particularly in the following ones. In [16], a number of
approaches for including randomness in the encryption techniques have been discussed mainly
regarding block and stream ciphers. According to [16], the randomized encryption is a procedure
which enciphers a message by randomly choosing a ciphertext from a set of ciphertexts corre-
sponding to the message under the current encryption key, and the following is claimed, [16]: ”At
the cost of increasing the required bandwidth, randomized encryption procedures may achieve
greater cryptographic security than their deterministic counterparts ...”. In [3], a pseudorandom
number generator based on the Learning from Parity with Noise (LPN) problem, derived from
an older proposal of one-way function based on the hardness of decoding a random linear code,
has been reported. (Informally note that the LPN problem can be considered as the problem of
solving a system of linear equations corrupted by noise. or a problem of decoding a linear code;
A more formal specification of the LPN problem will be given later on). In [7], a probabilistic
private-key encryption scheme named LPN-C whose security can be reduced to the hardness
of the LPN problem has been proposed and considered. Recently, in [1] a symmetric encryp-
tion scheme similar to the one reported in [7] is reported and its security and implementation
complexity are analyzed. The symmetric encryption schemes reported in [7] and [1] appears as
interesting and stimulating for further considerations (having in mind improvements as well)
particularly because the security is related to the recognized hard (LPN) problem.
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Origins for the construction given in this paper are the approaches for stream ciphers design
recently reported in [14] and [15] but the construction in this paper is substantially different
because it does not employ the keystream generators. This difference has a number of implica-
tions regarding the security analysis and implementation complexity of the scheme. Motivation
for this paper is a consideration of the possibilities for some novel approaches for inclusion of
pure randomness into certain encryption framework. Particular goals of the paper are the follow-
ing: (i) specification of a family of ciphers which involve (balanced) randomness and dedicated
coding; (ii) consideration of the impact of randomness on the security of the proposed class of
ciphers and the security statements based on the LPN problem hardness; (iii) a discussion on the
implementation complexity and the communications overhead of the proposed class of ciphers;
(iv) a comparison of the proposed ciphers family with the related recently reported encryption
schemes.

Brief Summary of the Results.
This paper proposes an improvement of certain encryption approaches based on the LPN prob-
lem reported in [7] and [1]. The improvement is based on involvement of a dedicated homophonic
coding with impact on the parameters of the LPN problem required for achieving certain secu-
rity level, i.e. the involved homophonic encoding transforms an LPN type problem with a certain
noise rate into another LPN type problem with a larger noise rate, thereby making the problem
harder1. The proposed framework provides enhanced security and reduction of the communica-
tion overhead and low implementation complexity approximately same as the implementation
complexity of the source scheme. The analysis shows that the security enhancement appears as
a joint effect of pure randomness involved in homophonic encoding and the secret key in the fol-
lowing manner: The pure randomness involved in homophonic encoding additionally ”protects”
the secret key, and the secret key makes homophonic decoding hard for an attacker who does not
posses the secret key, i.e. removing of the randomness appears as hard as recovering of the secret
key. Regarding implementation complexity note that the involvement of linear homophonic cod-
ing implies that the encoding and decoding operations are vector-matrix multiplications. Also,
note that assuming linear block error-correction coding, the homophonic and error-correction
encoding can be considered as an equivalent encoding performed via single vector-matrix multi-
plication. Finally, note that the approaches [7] and [1] require a source of randomness and this
source could be employed for generation of the randomness required for homophonic encoding
as well. The proposed encryption is compared with the related ones reported in [7] and [1] and
it is pointed out that increased security and reduced communication overhead can be achieved
preserving the implementation complexity at the same time. Accordingly, the approach reported
in this paper provides a significant improvement of the related previously reported ones, and
includes a substantival novelty regarding a dedicated involvement of the homophonic coding for
the security enhancement.

Organization of the Paper. Section 2 yields a summary of the backgrounds. Section 3 proposes an
improved ciphering approach based on employment of homophonic coding including underlying
ideas for the design and its algebraic structure. Security evaluation of the proposal is given in
Section 4. Implementation complexity and communications overhead of the proposed ciphering

1 The security evaluation implies that the homophonic encoding transforms the underlying LPN problem into
another one where the noise level is increased. Accordingly, the following question could be raised: If the
underlying problems are the same up to the nose parameter why not just propose the scheme with an increased
noise. Regarding the addressed issue it is important to note that the homophonic encoding plays role of an
amplifier of the initial noise related to the LPN problem only when the secret key is not known. Accordingly, a
legitimate user does not face the increased noise but an attacker faces the LPN problem with increased noise.
On the other hand, the employed level of the initial noise implies the required error-correction code and if this
noise is high the required error-correction coding introduces a high (and unacceptable) overhead to the system.



approach are considered in Section 5. A comparison of the proposed construction with two
related and recently reported ones is given in Section 6. Certain concluding notes are pointed
out in the Section 7.

2 Background

2.1 The LPN Problem

The security of the encryption schemes which are origins for the one proposed in this paper,
as well as the security of the proposed scheme, is related to the following informally specified
problem (which is a hard one). Let k be a security parameter. If s,d1, ...,dq are binary vectors
of length k, let yi =< s · di > denote the inner product of s and di (modulo 2). Given the
pairs (d1, y1), (d2, y2), ..., (dq, yq), for randomly-chosen {di}q

i=1 and q = O(k), it is possible to
efficiently determine s using standard linear-algebraic techniques. However, in the presence of
noise where each yi is flipped (independently) with probability ε, finding s becomes much more
difficult. We refer to the problem of learning s in this case when the values {yi}q

i=1 are flipped as
the learning parity in noise (LPN) problem with the parameters k, q and ε - LPNk,q,ε problem
(Formal definition of the LPN problem is out of the scope of this paper). Note that the LPN
problem is a particular problem of solving a system of consistent overdefined linear equations
corrupted with noise so that each equation is correct with a given probability.

2.2 Certain Encryption Schemes Based on the LPN Problem

Summary of the Symmetric Encryption Scheme [7] Let C : {0, 1}` → {0, 1}n be an
[n, `, d] error-correcting code (i.e. of length n, dimension `, and minimal distance d) with cor-
rection capacity equal to the integer part of t = d−1

2 . This error-correcting code is assumed
to be publicly known. Let S be a secret key k × n matrix (constituting the secret key of the
cryptosystem). To encrypt an `-bit vector a, the sender draws a k-bit random vector u and
computes

z = C(a)⊕ u · S⊕ v, (1)

where v ← Bern,p is an n-bit noise vector such that each of its bits is (independently) 1 with
probability p and 0 with probability 1 − p. The resulting ”ciphertext” is the pair (u, z). Upon
reception of this pair, the receiver decrypts by computing z⊕uS = C(a)⊕v, and decoding the
resulting value. If decoding is not possible (which may happen when the code is not perfect),
then the decryption algorithm returns ”decryption error”. When the message is not `-bit long,
it is padded till its length is the next multiple of ` and encrypted block-wise. Finally note that
when the employed error-correcting code is a binary linear one, C(a) = a ·G where G is a binary
matrix of dimension `× n.

Summary of the Symmetric Encryption Scheme [1] The symmetric-key cryptosystem
prposed in [1] is based on the LPN problem. Its ciphertexts are only a constant factor larger
than the plaintexts, and both encryption and decryption can be performed by Boolean circuits
of (approximately) linear size (in the message length), which is almost optimal even for standard
CPA-security. The scheme is a close variant of the LPN-based encryption scheme reported in
[7], which was proved secure only in the standard sense (i.e., without key-dependent messages),
and did not achieve linear time efficiency. The symmetric encryption scheme proposed in [1] is
summarized by the following.

Let ` = `(k) be a message-length parameter which is set to be an arbitrary polynomial in the
security parameter k assuming that shorter messages are padded with zeroes, and let ε = 2−m



and 0 < δ < 1 be constants. The scheme [1] employs a family of good binary linear codes with
information words of length `(k) and block length n = n(k), that has an efficient decoding
algorithm D that can correct up to (ε+δ) ·n errors. Accordingly, let G = G` be the n×` binary
generator matrix of the employed code.

Let N = N(k) be an arbitrary polynomial (which controls the tradeoff between the key-length
and the time complexity of the scheme). The private key of the scheme is a matrix S which is
chosen uniformly at random from Zk×N

2 Then, the encryption and decryption procedures are
specified as follows.

Encryption: To encrypt a message in form of a matrix A ∈ Z`×N
2 , choose a balanced

random matrix U ← Zn×k
2 and a random noise matrix V ← Bern×N

ε . Output the ciphertext
(U,Z), where

Z = G ·A⊕U · S⊕V . (2)

Decryption: Given a ciphertext (U,Z) apply the decoding algorithm D to each of the
columns of the matrix Z⊕U · S and output the result.

Observe that the decryption algorithm fails only when there exists a column in V whose
Hamming weight is larger than (ε + δ)n.

2.3 Universal Homophonic Coding

Homophonic coding or ”multiple substitution” (see [10], [17] and [12], for example) is a technique
for mapping source data employing certain random bits into the encoded data which are the
randomized form of the source ones so that the source data can be recovered from the noise-free
encoded ones without knowledge of the random bits. Homophonic encoding provides that many
particular outputs of encoding become possible substitutes (or ”homophones”) of the source
data based on employment of different random sequences. Perfect homophonic code provides
that the encoded data appear as truly random ones.

A particular class of homophonic codes are the universal ones reported in [12]: These codes
provide the randomization without knowledge of the source data statistics which is a request
for some homophonic coding schemes. The source data can be recovered from the homophonic
encoder output without knowledge of the randomizing data by passing the encoded data through
the decoder and then discarding the randomizer bits.

Finally note that the Wire-tap channel coding [19] is based on assigning multiple codewords
to the same information vector and from that point of view, particularly when the main channel
is noise-free, it shares the same underlying idea employed in the homophonic coding. (In the
following, only the homophonic coding will be considered.)

3 An Encryption Scheme Based on Homophonic Coding and its Algebraic
Representation

3.1 Underlying Ideas for Improvement the Reported Approach

It is well known (see [16], for example) that involvement of randomness in a cryptographic
primitive can result into an enhanced security. Let a be a binary vector which is subject of
homophonic encoding and r be a random binary vector. A linear homophonic encoding performs
mapping of the concatenation of a and r into a resulting binary vector, a codeword, where each
bit is a linear combination of certain bits of a and r. If the codeword is encrypted by mod2
addition with certain secret binary vector, the resulting vector consists of bits which depend on
certain random and certain secret data.

Our goal is to design an encryption scheme where, assuming the chosen plaintext attack,
the randomness involved in homophonic encoding protects secret key as a consequence of the



following: Removing of the randomness, i.e. decoding, without knowledge of the secret key
becomes as complex as recovering the secret key employing the exhaustive search approach.
(The security evaluation given in Section 4 shows how close the proposed design is to the above
specified goal.)

Accordingly, this paper proposes employment of the concatenation of dedicated homophonic
encoding and error-correction coding instead of just the error-correction one as the approach
for enhancing the security, as well as to provide additional implementation flexibility of the
encryption schemes reported in [7] and [1].

3.2 Proposal

The design proposed in this section originates from a consideration of the possibilities for some
novel approaches regarding inclusion of pure randomness into the symmetric key encryption
frameworks reported in [7] and [1]. The main goal of employment the pure randomness is to
provide a supporting element for enhancing the security implied by hardness of the LPN problem.

We assume the following notations:
- a = [ai]`i=1: `-dimensional binary vector of message/plaintext data;
- r = [ri]m−`

i=1 : (m − `)-dimensional binary vector of random data where each ri is a realization
of the binary random variable Ri such that Pr(Ri = 1) = Pr(Ri = 0) = 1/2, i = 1, 2, ..., n;
- u = [ui]ki=1: k-dimensional binary vector of random data where each ui is a realization of the
binary random variable Ui such that Pr(Ui = 1) = Pr(Ui = 0) = 1/2, i = 1, 2, ..., k;
- S = [si,j ]ki=1

n
j=1: k × n-dimensional binary matrix of the secret key

- v = [vi]ni=1: n-dimensional binary vector of random data where each vi is a realization of the
binary random variable Vi such that Pr(Vi = 1) = p and Pr(Vi = 0) = 1− p, i = 1, 2, ..., n;
- CH(·) and C−1

H (·): operators of the homophonic / wire-tap channel encoding and decoding,
respectively; CH(·) denotes a mapping {0, 1}m → {0, 1}m;
- CECC(·) and C−1

ECC(·): operator of the error-correction encoding and decoding, respectively;
CECC(·) denotes a mapping {0, 1}m → {0, 1}n; .

This paper proposes a symmetric key encryption scheme where the encryption and decryption
operations are specified by the following.

– Encryption
1. Employing r perform the homophonic (wire-tap channel) encoding of the a and the error-

correction encoding of the resulting vector as follows: CECC(CH(a||r)) where || denotes
the concatenation.

2. Generate the ciphertext in form of n dimensional binary vector z as follows:

z = CECC(CH(a||r))⊕ u · S⊕ v . (3)

– Decryption
Assuming availability of the pair (u, z) decrypt the ciphertext as follows:

a = tcat`(C−1
H (C−1

ECC(z⊕ u · S))) , (4)

where tcat`(·) denotes truncation of the argument vector to the first ` bits and the assumption
is that the employed code which corresponds to CECC(·) and C−1

ECC(·) can correct the errors
introduced by a binary symmetric channel with the crossover probability p.

Note that, as in the case of the ciphering schemes [7] and [1], the random vector u is a public
one, and the decryption part assumes availability of the pair (u, ciphertext). Also note that the
decryption does not require knowledge of r.



3.3 Algebraic Structure Assuming Employment of Linear Codes

Encoding and Decoding Encoding Issues. When the employed homophonic and error-correcting
codes are linear, the encoding operations in the both cases are vector-matrix multiplications.
Accordingly, the encoded version of a||r is given by the following:

CH(a||r) = [a||r]GH , (5)

and GH is an m×m matrix, and thus

CECC(CH(a||r)) = CECC([a||r]GH)
= [a||r]GHGECC

= [a||r]G (6)

where GECC is an m×n binary generator matrix corresponding to CECC(·), and G = GHGECC

is an m × n binary matrix summarizing the two successive encodings at the encryption side,
implying that

z = [a||r]G⊕ u · S⊕ v .

Decoding Issues. Assuming that the employed ECC can correct all the errors introduced by the
vector v we have

C−1
ECC(z⊕ u · S) = C−1

ECC(CECC(CH(a||r))⊕ v) = [a||r]GH , (7)

and accordingly,
C−1

H (C−1
ECC(z⊕ u · S)) = [a||r]GHG=1

H = [a||r] , (8)

implying that
tcat`(C−1

H (C−1
ECC(z⊕ u · S))) = a .

An Algebraic Representation at the Bit Level Let G = [gi,j ]mi=1
n
j=1, and let z = [zi]ni=1.

Then,

zi = (
⊕̀

j=1

gj,iaj)⊕ (
m−`⊕

j=1

g`+j,irj)⊕ (
k⊕

j=1

sj,iuj)⊕ vi , i = 1, 2, ..., n, (9)

implying that under the known plaintext attack we have

xi ⊕ (
m−`⊕

j=1

g`+j,irj)⊕ vi = zi ⊕ (
⊕̀

j=1

gj,iaj) , i = 1, 2, ..., n, (10)

where

xi = (
k⊕

j=1

sj,iuj) , i = 1, 2, ..., n , (11)

and where the right-hand side of the equations have known value.
In a particular setting, the homophonic encoding can be represented by the following matrix

GH assuming that it is the invertible one.
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, (12)

where the sub-matrix with the ones on the main diagonal and the zeros on all other positions is
the square (m− `)× (m− `) one.

4 Security Evaluation of the Proposed Encryption Scheme

4.1 Attacking Scenario

Following the security evaluation claims given in [7] and [1], the security evaluation given in
this section is related to the chosen plaintsxt attack (CPA) because the main goal of security
evaluation is to point out the impacts of involvement of homophonic dedicated coding into the
encryption framework proposed in [7] and [1].

Regarding the security of the encryption scheme proposed in this paper against the chosen
ciphertext attacks (CCAs) when an attacker has access to the decryption oracle (including the
adaptive CCA) note the following: (i) The proposed scheme is as vulnerable to a CCA as the
ones reported in [7] and [1]; (ii) Security of the proposed scheme against CCAs can be achieved
in the same manner as considered in [7] and [1] i.e. by using a Message Authentication Code
(MAC). (For example the encrypt-then-MAC paradigm discussed in [7] can be employed.)

Accordingly, in order to point out the main effects of the involved homophonic coding, this
section discusses the indistinguishability in CPA scenario, and security implied by hardness of
recovering secret key based on the algebraic representation of encryption also in CPA scenario.

4.2 Security Implied by the Indistinguishability in CPA Scenario

The indistinguishability (IND) deals with the secrecy provided by the scheme in the following
sense: An adversary must be unable to distinguish the encryption of two (chosen) plaintexts.
Accordingly, and particularly following [7], as a criterion for the security consideration, in this
section we consider the IND one.

Main claim of this section is that the proposed scheme fulfils the same IND security as the
one in [7], i.e. that the employed homophonic coding does not affects the IND security, and so
only a brief generic discussion is given.

For the IND considerations we assume the following traditional approach. An adversary is
considered as a pair of algorithms A = (A1,A2) and they operate through two phases as follows.

– A1 is employed during the first phase and at the end of this phase, A1 outputs a pair of
plaintexts (a1,a2).



– One of the given plaintexts is selected with probability equal 1/2, then encrypted, and the
obtained ciphertext is delivered to A2 - this represents A’s challenge. The success of A is
determined according to correctness of decision whether a1 or a2 was encrypted.

In [7] and [1] it is shown that the encryption schemes reported there (see Section 2.1, as well)
are IND secure ones assuming that the related underlying LPN problems are hard. Consequently,
we have the following statement.

Theorem 1. The encryption scheme proposed in this paper is IND secure assuming employment
of a linear homophonic and error-correction coding.

Sketch of the Proof. Note that under the assumption of linearity, an error-correction encoding
and a concatenation of homophonic and error-correction coding can be represented by a vector-
matrix multiplication, i.e. all three schemes, the ones reported in [7] and the proposed one, have
the following encryption framework

z = C∗(a)⊕ uS⊕ v . (13)

where the encoding operator C∗(·) represents either error-correction encoding or a concatena-
tion of homophonic and error-correction encoding. Accordingly, the same security evaluation
regarding IND criterion can be employed (including the reduction from an IND-CPA attack to
solving the LPN problem) resulting in the statement of IND security.

4.3 Security Implied by Hardness of Recovering Secret Key Based on the
Algebraic Representation of Encryption

This section yields a security evaluation via consideration the hardness of recovering the secret
key based on the algebraic representation of the encryption in CPA scenario.

Preliminaries

Let’s consider encryption of a single plaintext vector a. The following vector equation yields
an origin for consideration of hardness of recovering the secret key. For simplicity we assume a
chosen plaintext attack where the data are all zeros, i.e. a = 0, and according to (11) we have
the following:
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, (14)

where Li(·), i = 1, 2, ..., n, are certain linear functions of the arguments {ri}i.
Note that in the set {Li(·)}n

i=1 the elements could be split into two non-overlapping subsets
such that one subset contains m − ` mutually independent elements, and the other subset
contains n−m + ` elements each of which is a linear combination of the elements from the first
set. Consequently and assuming for simplicity of a preliminary consideration that the matrix
GE is an identity matrix, the previous vector equation implies the following one.
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where L′i(·), i = m− ` + 1,m− ` + 2, ..., n, are certain linear functions of the arguments {ri}i.
Accordingly, note that the vector [r1, r2, · · ·, rm−`,L′m−`+1({ri}i),L′m−`+2({ri}i), · · ·,L′n({ri}i)]
contains m−` independent elements and another n−m+` which are certain linear combinations
of the first m− ` elements.

The previous is a direct consequence of the following: For n > m − ` there are just m − `
independent realizations {ri}m−`

i=1 of the random variables Ri, Pr(Ri = 1) = Pr(Ri = 1) = 1/2,
i = 1, 2, ..., m− `. Accordingly, always exists a vector [α1, α2, ..., αn] ∈ {0, 1}n such that

n⊕

i=1

αi(
m−`⊕

j=1

g`+j,irj) = 0 (15)

The previous implies that for each i = 1, 2, ..., n, we have the following equation:

xi ⊕
n⊕

j=1, j 6=i

αjxj = (zi ⊕
n⊕

j=1, j 6=i

αjzj)⊕ (vi ⊕
n⊕

j=1, j 6=i

αjvj) . (16)

Finally note the following: Via recording a sequence of elementary encryption cycles for the
time instances t = 1, 2, ..., τ , and assuming that at each time instance the vector x(t) = u(t)S,
we record the sample for cryptanalysis {z(t)}τ

t=1 such that the following is valid:

z(t) = [a(t)||r(t)]G⊕ x(t) ⊕ v(t) , t = 1, 2, ..., τ . (17)

Security Claim
Regarding the following security claim we assume that the probability p of ones in the noise
vector v is adjusted to the error-correction capability of the employed error-correction code.

Theorem 2. When a sample of nτ ciphertext bits is available in CPA scenario, secret key recov-
ery based on algebraic representation of the proposed encryption scheme is as hard as solving the
LPNkn,q,ε problem with ε = 1−(1−2p)(m−`)/2

2 when q = (n−m+`)τ queries are involved, where p is
the crossover probability of a binary symmetric channel for which the employed error-correction
code is designed, and `, m, k, and n are the parameters.

The proof of Theorem 2 is given in the Appendix.

Particularly note that involvement of the noise {v(t)}t prevents employment of the time-
memory and time-memory-data trade-off techniques (see [8], [2] and [13], for example) for a
more efficient exhaustive search recovery of the secret key.



5 Complexity of Implementation and Communications Overhead

5.1 Complexity of Implementation

Preliminary Note. Following [1], in order to get a quasilinear time implementation of the error
correction coding (for sufficiently long messages), the codes reported in [18], with the property
that the encoding can be computed via a circuit of size O(m) and the decoding can be decoded
by a circuit of size O(mlog2m) can be employed.

Complexity Estimation. Complexity of encrypting/decrypting a bit of plaintext (the normalized
complexity) can be directly estimated as follows.

– Complexity of Encryption: It is dominantly determined by the sum of the complexities of
the employed homophonic encoding, error-correction encoding, and keystream generation.
• Complexity of homophonic encoding: O(m)/` (assuming employment of a sparse/low-

density generator matrix)
• Complexity of error-correction encoding: O(n)/` (assuming employment of a sparse/low-

density generator matrix)
• Complexity of keystream generation (the vector-matrix multiplication uS): (k · n)/`.

Overall normalized complexity of encryption: O(m)/`+O(n)/`+(k ·n)/` ≈ (k ·n)/` assuming
that k > 100, which is a typical case (see [7], for example).

– Complexity of Decryption: It is dominantly determined by the sum of the complexities of
the keystream generation, employed error-correction encoding, and employed homophonic
encoding.
• Complexity of keystream generation (the vector-matrix multiplication u · S): (k · n)/`.
• Complexity of error-correction decoding: O(n)/` (assuming employment of a suitable

low-complexity decoding code)
• Complexity of homophonic decoding: O(m)/` (assuming employment of a sparse/low-

density generator matrix which inverse is a sparse/low-density matrix as well)
Overall normalized complexity of decryption: (k · n)/` + O(n)/` + O(m)/` ≈ (k · n)/` when
k > 100, which is a typical setting.

5.2 Communications Overhead

Communications overhead per-a-bit of plaintext is an implication of: (i) requirement for avail-
ability of the pair (u, z) for the decryption purposes; (ii) employment of homophonic and error-
correction coding. Let αH and αE denote the communications overhead rates due to the homo-
phonic and error-correction encoding, respectively.

The overall communications overhead α is:

α =
k

`
+ αH · αE =

k

`
+

m

`
· n

m
=

k + n

`
. (18)

6 Comparison with the Related Encryption Schemes

The encryption scheme proposed in this paper originates and follows the paradigm of the ones
reported in [7] and [1] and accordingly, all three schemes have the following common feature: (i)
they are symmetric encryption based on the LPN problem hardness; (ii) they employ deliberate
noise (from a dedicated source of randomness) and error-correction coding; (iii) they are based on
simple binary additions/multiplications and vector/matrix operations. Additionally, the scheme
proposed in this paper employs homophonic coding in order to provide an enhanced security and
additional flexibility of the parameters selection, as well as a possibility for trade-off between
the security, communications overhead and implementation complexity.



6.1 Security Issues Related to the Underlying Ideas and the LPN Problems

The schemes reported in [7] and [1] as well as the scheme proposed in this paper are based on
the LPN problem which provides that the security appears as the hardness of solving the LPN
problem. The approach proposed in this paper provides an enhanced hardness of the underlying
LPN problem (even for certain reduced values of the parameters of the LPN problem). The
enhancing appears as a consequence of employment a dedicated homophonic encoding which
involves pure randomness. Involvement of the homophonic encoding is done by replacement of
the error-correction block by a concatenation of the homophonic and error-correction encoding.
It has been shown that employment of homophonic encoding implies amplification of the initial
noise involved in the LPN problem. Accordingly, the security of the previously reported schemes
and the proposed one corresponds to different LPN problems. Let’s the LPNk,n,ε and LPNk∗,n∗,ε∗

denote the LPN problems corresponding to the schemes reported in [7] and [1], and the proposed
scheme, respectively. Theorem 2 implies that ε∗ = 1−(1−2p)(m−`)/2

2 . On the other hand according
to the best known algorithms for solving the LPN problem [11] and [4], the hardness of solving
the LPN problem heavily depends on the parameter ε and when it increase the complexity
of solving the LPN problem heavily increase. Accordingly, for the same parameters k, n, the
proposed scheme provides substantially higher security level in comparison with the previously
reported ones which employ ε = p.

The proposed encryption involves balanced random bits (which are not known in advance
at the receiver side) in each ciphertext bit: In order to easily learn these balanced random bits,
the secret must be known. The homophonic encryption scheme provides involvement of the pure
randomness into each bit of the ciphertext which can be easily removed when the secret key
is known but removing these balanced random bits from the ciphertext without knowledge of
a secret key is as hard as solving certain LPN problem. Finally, note the following: (i) The
algebraic representation of proposed encryption shows that each ciphertext bit is affected with
m−`

2 purely random bits which are realizations of a random process which generates zeros and
ones independently and with the probability equal to 1

2 ; (ii) no one purely random bit is involved
into a ciphertext bit in the schemes from [7] and [1].

It has been shown that all three schemes, the ones reported in [7] and [1] as well as the
proposed one are IND-CPA secure assuming that the underlying LPN problem is hard one. Note
that CCA security of the proposed scheme can be achieved in the same manner as discussed in [7]
for the there reported scheme. (The most straightforward way to get an encryption scheme secure
against chosen-ciphertext attacks from an encryption scheme secure against chosen-plaintext
attacks is to add message authenticity, e.g. by using a Message Authentication Code (MAC)).

As an additional security requirement beside the CPA related indistinguishability one, this
paper considers the security of the proposed encryption implied by hardness of recovering the
secret key via processing the system of algebraic equations which correspond to the encryption
process.

Accordingly, the security goals regarding the proposed scheme are oriented towards CPA
security, and the security related to the analysis of complexity of a generic algebraic attack
mounted over the algebraic representation of the scheme.

Accordingly, the main security features of the proposed scheme and the corresponding ones
from [7] and [1] are compared in Table 1. The illustrative numerical values given in Table 1
corresponds to the results reported in [11] and [7].

Finally note that one of the main roles of the encryption schemes from [1] is to provide
security against certain key-dependent message (KDM) attacks; that is, they remain secure
even when the adversary is allowed to obtain encryptions of messages that depend on the secret
keys themselves, via any affine function of the adversary’s choice. Consideration of the KDM
security of the proposed encryption is out of the scope of this paper.



Table 1. A comparison of certain features of the proposed encryption and two related ones recently reported in
[7] and [1]. (The ”balanced random bit” is one which takes values ”0” and ”1” with the same probability equal
to 1/2.)

parameters of expected # of unknown
the underlying balanced random bits
LPN problem involved in a

ciphettext bit

symmetric encryptions k, n, ε 0
[7] & [1]

proposed k∗, n∗, ε∗ = 1−(1−2p)(m−`)/2

2
(m− `)/2

encryption typically: k∗ << k, n∗ ≈ n, p << ε

6.2 Comparison of the Communications Overhead and Implementation
Complexity

The normalized communications overheads of the cipher [7] (and similarly for the corresponding
cipher [1]) and the proposed one are (k+n)/` and (k∗+n∗)/`, respectively, noting that typically
k∗ << k and n∗ ≈ n because a higher rate error-correcting code could be employed because
the same security level could be obtained with a smaller p which provides ε∗ > ε. This higher
rate error-correcting code can compensate the overhead implied by the employed homophonic
coding.

Regarding the implementation complexity note that the proposed scheme requires only one
additional (homophonic) encoding at the encryption side and one additional (homophonic) de-
coding at the decryption side. When the employed homophonic code is a linear one, the encoding
and decoding are vector-matrix multiplications. As discussed in Section 5.1, if a linear time en-
coding/decoding error-correction code is employed (as suggested in [1]) the implementation
complexities of the proposed scheme could be summarized as follows: (i) Overall normalized
complexity of encryption: ≈ (k∗ · n∗)/` assuming that k∗ > 100, which is a typical case (see [7],
for example); (ii) Overall normalized complexity of decryption: ≈ (k∗ · n∗)/` when k∗ > 100.

The implementation complexity of the scheme [7] can be estimated as follows: (i) Normalized
complexity of generating a ciphertext is dominated by the error-correction encoding and encryp-
tion and so it is O(n)/` + (k ·n)/` ≈ (k ·n)/` assuming that k > 100, which is a typical case (see
[7], for example); (ii) Normalized complexity of recovering the plaintext from the ciphertext dom-
inated by the decryption and error-correction decoding and so it is (k ·n)/`+O(n)/` ≈ (k ·n)/`
mod2 additions when k > 100. A similar estimation of the normalized complexities can be done
for the considered symmetric encryption [1].

The considered LPN-based constructions mainly rely on addition and multiplication of large
binary vectors / matrices. These operations can be performed very fast in practice even if one
does not employ the asymptotically-fast algorithms. It is claimed in [1] that in particular, as
in the case of the HB protocol (see [9] and [6], for example), that the considered LPN problem
based schemes (or variants of them) might turn to be useful for hardware implementation by
computationally-weak devices.

Table 2 yields an illustrative numerical comparison of certain issues relevant for consideration
of the implementation complexity.2

2 In details discussion of the error-correcting coding issues is out of the scope of this paper Particularly, just note
that the choice of the noise parameter p and the code influences not only security, but also the probability that
decryption is successful: Accordingly the comparisons of different settings should assume similar decryption
success.



Table 2. A comparison of a normalized implementation complexity (complexity of a bit encryption/decryption)
and the communications overhead of the proposed encryption and the one reported in [7] (and similarly for the
symmetric one recently reported in [1].) noting that typically k∗ << k and n∗ ≈ n.

normalized communications illustrative
implementation overhead numerical values

complexity of the parameters

encryption ε = p = 0.05
[7] ∼ kn/` (k + n)/` ` = 75, k = 768, n = 160

proposed m− ` = 30, p = 0.025, ε∗ = 0.268
encryption ∼ k∗n∗/` (k∗ + n∗)/` ` = 75, k∗512, n∗ = 160

7 Concluding Summary

A novel approach for design of certain ciphers has been proposed which is based on joint em-
ployment of pseudorandomness, randomness and dedicated coding. The pseudorandomness is
generated by a known vector and secret matrix multiplication over GF(2). Two types of binary
randomness are employed: The pure one where independent bits have the same probabilities of
zeros and ones, and a biased one where the independent bits take the value 1 with the probability
p << 1/2 and the value 0 with the probability 1 − p. Also two types of dedicated coding are
employed: One dedicated coding belongs to the class of the homophonic (i.e. wire-tap channel)
coding techniques, and the other one is the error-correcting code. The employed homophonic
encoding provides involvement of the pure randomness in the ciphertext and it is such that pro-
vides low-complexity extraction of the randomness, i.e. decoding, when the secret key is known,
and at he same time makes the decoding as complex as exhaustive search over all possible se-
cret keys when the secret key is not known. Accordingly, the homophonic encoding provides a
heavy uncertainty at the side of an attacker. The employed error-correction coding is such that
provides error-free decoding after a binary symmetric channel with the crossover probability p.
Algebraic representation of the proposed cipher has been employed for the security evaluation
and analysis of the implementation complexity and the communications overhead.

The security evaluation of the proposed encryption is considered from the following two
points of view: (i) security implied by the indistinguishability (IND) in the chosen plaintext
attack (CPA) scenario assuming hardness of the underlying LPN problem; (ii) security implied
by hardness of recovering the secret key based on the algebraic representation of the encryp-
tion in CPA scenario. Regarding (i), it is shown that the encryption is IND CPA secure, and
regarding (ii) it is shown that the addressed secret key recovery is as hard as the LPN when
the corrupting noise is ε = 1−(1−2p)(m−`)/2

2 and m, ` and p are the stream cipher parameters.
Accordingly, assuming that the parameters of the scheme are appropriately selected, the com-
plexity of the secret key recovery based on the algebraic representation is approximately as hard
as the exhaustive search over all possible secret keys. Particularly note that IND-CPA security
appears as an implication of the assumption on hardness of the underlying LPN problem, and it
should be taken into account that in certain settings the LPN problem is much easier than in the
worst case scenario, and accordingly additional security considerations, like the above (ii) one,
are desirable. Finally note that the homophonic encoding transforms an LPN type problem with
a certain noise rate into another LPN type problem with a larger noise rate, thereby making the
problem harder.

Consideration of the implementation complexity shows that the implementation complexity
is low regarding the both time and space, assuming that the linear block codes are employed.
In a number of settings the dominant operations are vector/matrix multiplications over GF(2).



Finally, the proposed cipher design is compared with the related symmetric encryptions re-
ported in [7] and [1] which are origins of the proposed scheme. The comparison implies that
the implementation complexities and the communications overheads in all three considered en-
cryption schemes are similar when the same parameters are employed. On the other hand, the
proposed scheme can provide the same level of security for reduced values of certain parameters
implying that, in certain scenarios, it can provide lower communications overhead and more
efficient implementation. Also, all three schemes fulfil the indistinguishability security criterion
in CPA. On the other hand, the proposed scheme provide the enhanced security regarding the
complexity of recovering the secret key via processing the algebraic equations which represent
the encryption process. For all three schemes this recovery is as hard as solving the LPNε prob-
lem with ε = p for the schemes [7] and [1], and ε = 1−(1−2p)(m−`)/2

2 which implies an enhanced
security regarding the algebraic key recovery. The homophonic encryption scheme provides in-
volvement of the pure randomness into each bit of the ciphertext which can be easily removed
when the secret key is known but removing these balanced random bits from the ciphertext
without knowledge of a secret key is as hard as solving certain LPN problem.

8 Appendix: Proof of Theorem 2

In the considered CPA scenario which corresponds to the all zeros plaintext, for each t, 1 ≤ t ≤ τ ,
a single ciphetext word implies the following system of a basic equations when the plaintext
consists of all zeros:

x
(t)
1 = z

(t)
1 ⊕ L1({r(t)

i }i) ⊕ v
(t)
1

x
(t)
2 = z

(t)
2 ⊕ L2({r(t)

i }i) ⊕ v
(t)
2

·
·
·

x
(t)
m−` = z

(t)
m−` ⊕ Lm−`({r(t)

i }i) ⊕ v
(t)
m−`

x
(t)
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(t)
m−`+1

x
(t)
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·
·
·

x
(t)
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(t)
n ⊕ Ln({r(t)

i }i) ⊕ v
(t)
n

(19)

where Li(·), i = 1, 2, ..., n, are certain linear operators.

Via suitable linear combining of the above equations we obtain the following processed system
of equations related to a single word when the plaintext consists of all zeros.
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(20)

where L∗i (·), i = 1, 2, ..., n, are certain linear operators.

Accordingly, discarding the equations which contain the random bits, i.e. the components
Li({r(t)

j }j), i = 1, 2, ...,m−`, we obtain the following aggregated system of (n−m+`)τ equations
corresponding to t = 1, 2, ..., τ .

·
·
·
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(21)

According to (11) we have

x
(t)
i = (

k⊕

j=1

sj,iu
(t)
j ) , i = 1, 2, ..., n (22)

and accordingly, the system of equations (21) becomes the following one:
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When each of m− ` variables v
(t)
i is a realization of a random binary variable V

(t)
i , such that

Pr(V (t)
i = 1) = 1 − Pr(V (t)

i = 0) = p, i ∈ [1, 2, ..., n], t = 1, 2, ..., and assuming that the design
of the matrix G is such that each operator L∗j (·) involve a half of them, we have the following
(see [5], for example):

Pr(L∗j ({Vi}i) = 1) =
1− (1− 2p)(m−`)/2

2
. (24)

The system of equations (23) is an overdefined consistent system of (m − n + `)τ linear
equations with kn unknown variables where each equations is true with the probability 1 −
1−(1−2p)(m−`)/2

2 = 1− ε. Note that on the left hand side of each equation is a linear combination
of certain unknown and known variables and accordingly it can be considered as a component
equation of the LPNkn,q,ε problem when q = (m− n + `)τ queries are involved.

The above considerations imply the theorem statement.
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